

Faculty of Engineering Electrical Engineering Department Probability and Statistical Engineering, ENEE331

Dr. W. Hashlamoun, Mr. N. Nofal, Dr. M. Jubran

Final exam

Date: Tuesday 18/5/2010 Name: Time: 150 minutes Student #:

Problem 1 (16pts):

A sample space S consists of three events, A, B, and C such that $P(A^{C}) = 0.5$, $P(A \cap B) = 0.25$, and $P(B \cup C) = 0.75$. The pair of events (A and B), (B and C) are independent. Events A and C are mutually exclusive. Find the followings:

- a. **P(A)**, **P(B)**, and **P(C)**.
- b. P(B / A)

Problem 2 (16pts):

Let X be a continuous random variable that has the following cumulative distribution function

$$F_{X}(x) = \begin{cases} 0 & x \le 0\\ Kx^{2} & 0 < x \le 10\\ 100K & x > 10 \end{cases}$$

- a. Find K so that $F_X(x)$ is a valid cumulative distribution function.
- b. Find $P(X \le 5)$.
- c. Find the probability density function.
- d. Find the mean value of X.

Problem 3 (16pts):

The internet connection speed at any time from your home can depend on the amount of overall internet traffic at that time. Let the random variable X denote the speed of connection in megabits per second (MBPS). Assuming X has a normal probability distribution function with mean μ = 1 MBPS and standard deviation σ = 0.1 MBPS, answer the following questions:

- a. What is the probability that the connection speed will be less than 0.837 MBPS at any given time?
- b. What is the probability that the connection speed will be between 0.837 MBPS and 1 MBPS at any given time?
- c. Find a value d such that the connection speed is between 1 d MBPS and 1 + d MBPS with probability 0.8664

Problem 4 (18pts):

a. Let the joint pdf of two random variables X and Y be given as

$$f_{X,Y}(x,y) = \begin{cases} 2(x+y) & 0 \le x \le 1, 0 \le y \le 1\\ 0 & otherwise \end{cases}$$

- 1. Find the marginal probability density functions $f_{x}(x)$ and $f_{y}(y)$.
- 2. Are X and Y independent?
- b. If X and Y are independent, normal random variables with E(X) = 10, Var(X) = 4, E(Y) = 0, and Var(Y) = 9. Let T = X 2Y, find the mean and variance of T

Problem 5 (18pts):

- a. Given a random sample X₁, X₂, ..., X_n of size n drawn from a distribution with pdf $f(x) = \theta e^{-\theta x}$, x > 0. Use the maximum likelihood method to find a point estimator for the unknown parameter θ in terms of the observations.
- b. Suppose that a random sample of size 25 is taken from a a normal distribution with mean $\mu_X = 9$ and $\sigma_X^2 = 4$. Write down the probability density function of the sample average $\sum_{i=1}^{25} X_i$

defined as
$$\overline{X} = \frac{\sum_{i=1}^{N} X_i}{25}$$

Problem 6 (16pts):

The annual rainfall in a region is normally distributed with unknown mean value μ_{x} and unknown variance σ_{x}^{2} . Annual rainfall measurements, $X_{1}, X_{2}, \dots, X_{10}$, were collected over a period of 10 years and it was found that the sample mean is 112.4 cm and the sample standard deviation is 37.6 cm

- a. Find a 95% confidence interval on the population mean μ_{x} .
- b. Find a 95% confidence interval on the population variance σ_x^2

GOOD LUCK 😳